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Introduction
Many studies after the

identification of CD4+CD25+T cells
have focused on the role of

immunoregulatory T cells in the
suppression of anti-tumor responses.1
Natural T regulatory (Tregs) cells
arise in the thymus but some Tregs

Abstract 
T regulatory cells play a crucial role in immunological unresponsiveness to self-

antigens and in suppressing excessive immune responses deleterious to the host. T
regulatory cells are produced in the thymus as a functionally mature subpopulation of
T cells. They can be induced from naive T cells in the periphery and express their marker
as a forkhead/winged helix transcription factor called FoxP3. In patients with lymphomas
where T regulatory cells serve as suppressor anti-tumor cytotoxicity, decreased numbers
of T regulatory cells are associated with a favorable prognosis. In contrast, in patients
with lymphomas where T regulatory cells function as anti-tumor cytotoxic agents,
enhanced numbers of T regulatory cells are associated with a favorable prognosis. 

Tumors actively promote the accumulation of these cells through several mechanisms
that involve activation of naturally occurring T regulatory cells as well as conversion
of non-T regulatory cells into T regulatory cells. Tumor-derived prostaglandin E2 can
increase T regulatory cell activity and induce a regulatory phenotype in CD4+CD25+T
cells. On the other hand, a balance between T regulatory and Th17 cells is essential for
maintaining homeostasis of anti-tumor immunity. Accelerating processes such as
increasing the amounts of IL-6 or IL-17 can enhance FoxP3 T regulatory cell expression
and result in a lymphoma or inactivation of T cell CD4+. This effect is the reason for
malignancy and a reduction in anti-tumor immune response. In this systematic review
we intend to analyze this relationship. We have collected and analyzed the majority of
recently published articles on the role of T regulatory cells as a  review article.
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may also be induced in the periphery,2 expressing
their marker as a forkhead/winged helix
transcription factor called FoxP33 and mediate
the  peripheral tolerance by suppressing the level
of autoreactive T cells.4 T regulatory cells also
inhibit autoimmune and inflammatory diseases as
well as anti-tumor immune responses.5-7 An
increased number of Tregs have been observed in
different malignancies.8 T regulatory cells have
numerous markers. Up-regulation of markers
such as CD25, CTLA-4, and the glucocorticoid-
induced TNFR family-related gene (GITR) induce
Tregs to inhibit the activities of other cells such
as TCD4+ cells.

The development of a clinically efficient cancer
immunotherapy has been problematic and mostly
attributed to the suppressed T cell function
described in many cancer patients. Inhibition of
anti-tumor immune responses is mainly linked
to inhibitory factors (Tregs) present in cancer
patients.9 Patients with Chronic lymphocytic
leukemia (CLL) who undergo chemotherapy with
fludarabine, cyclophosphamide or alemtuzumab
have altered ratios of CD4+ to CD8+ T cells.
These chemotherapeutic agents are cytotoxic for
T cells. This effect is attributed to fludarabine
which causes increased susceptibility of CD8+ T
cells to apoptosis compared to CD4+ T cells.10 The

use of low-dose cyclophosphamides has been
shown to decrease the number of Treg cells in
murine models.11 An increase in the frequency of
Tregs was found in untreated patients with
intermediate (Binet B) or extended disease (Binet
C) CLL according to the Binet clinical staging
system. Patients treated with chemotherapy
regimens that contained fludarabine showed
significantly reduced amounts of Tregs.12 In a
murine fibrosarcoma model, the Tregs observed
in the tumor environment were the majority of
tumor-infiltrating lymphocytes (TILs) at the late
stage of tumor progression. The evacuation of
Tregs during the effector rather than priming
phase successfully enhanced anti-tumor
immunity.13 As can be seen from the above data,
numerous studies have been performed regarding
the role of Tregs in cancer and autoimmune
diseases. When Tregs are present in tissue, a
defect in the immune response can be seen. This
review is a systematic review on the results of
different studies published thus far about the role
of Tregs in different lymphomas.

T regulatory (Treg) cells
T regulatory cells are classified into two groups,

natural and adaptive (induced). Natural Tregs
(nTregs) are CD4+CD25+ T cells which develop
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Figure 1. Differentiation of naive CD4+ T cells into T regulatory (Tregs) cells. FoxP3 Tregs in peripheral tissues can be divided into naturally
occurring Tregs (nTregs) and adaptive/inducible Tregs (iTregs).  Naturally occurring Tregs differentiate in the thymus, whereas iTregs
are generated from naive T cells in the periphery.
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and migrate from the thymus to perform their
role in immune homeostasis. Induced Tregs
(iTregs) are non-regulatory CD4+ T cells which
acquire CD25 (IL-2R α) expression outside of
the thymus and are typically induced by
inflammation and disease processes such as

cancer.14 To date, no specific marker can
distinguish nTregs from iTregs. Recently, reports
state that the Helios family may be helpful for
distinguishing nTregs from iTregs, however others
have reported that Helios is also highly expressed
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Table 1. Markers of T regulatory (Treg) cells.
Marker Author Study title
FoxP3 Hori S, Nomura T, Sakaguchi S Control of regulatory T cell development by

the transcription factor FoxP3
Gavin MA, Torgerson TR Single-cell analysis of normal and FoxP3-mutant 

human T cells: FoxP3 expression without regulatory 
T cell development

Morgan ME, van Bilsen JH Expression of FoxP3 mRNA is not confined to CD4+CD25+

Treg cells in humans
Wang J, Ioan-Facsinay A Transient expression of FoxP3 in human activated

nonregulatory CD4+ T cells
CD25 Lawson JM, Tremble J Increased resistance to CD4+CD25hi regulatory T cell-

mediated suppression in patients with type 1 diabetes
Beavis PA Resistance to regulatory T cell-mediated suppression in

rheumatoid arthritis can be bypassed by ectopic FoxP3
expression in pathogenic synovial T cells

Bodor J Regulatory T cell-mediated suppression: Potential role of
ICER

CTLA-4 (cd152) Tang Q Distinct roles of CTLA-4 and TGF-beta in CD4+CD25+

regulatory T cell function
Sakaguchi S Regulatory T cells: How do they suppress immune 

responses?
Davidson TS Polyclonal Treg cells modulate T effector cell trafficking
Kolar P CTLA-4 (CD152) controls homeostasis and suppressive 

capacity of regulatory T cells in mice
ICOS Ito T Two functional subsets of FoxP3+ regulatory T cells in 

human thymus and periphery
Redpath SA ICOS controls FoxP3+regulatory T cell expansion 

maintenance and IL-10 production during helminth 
infection

CD39 Deaglio S Adenosine generation catalyzed by CD39 and CD73 
expressed on regulatory T cells mediates immune 
suppression

Kobie JJ, Shah P Treg and primed uncommitted CD4 T cells express CD73,
which suppresses effector CD4 T cells by converting 5-
adenosine monophosphate to adenosine

CD122 Agustina TE CD8+CD122+ regulatory T cells (Tregs) andCD4+ Tregs 
cooperatively prevent and cure CD4+ cell-induced colitis

CD132 Ohki S CD8CD122 T cells, a newly identified regulatory T subset,
negatively regulate Graves’ hyperthyroidism in a murine
model

CD127 (IL-7Ra) Banham AH Role of regulatory T cells in human diseases Chatila TA
Cell-surface IL-7 receptor expression facilitates the 
purification of FoxP3 regulatory T cells

Weihong L CD127 expression inversely correlates with FoxP3 and 
suppressive function of human CD4+ Treg cells
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on Th2 and T follicular helper cells.15

Different specificities for CD4+CD25high

FoxP3+ Treg cells have been described such as
their  ability to actively inhibit CD4+CD25+ Tcells,
CD8+ T cells, dendritic cells (DCs), natural killer
(NK) cells,1 natural killer T (NKT) cells, and B
cells via cell-to-cell contact and dose-dependent
mechanisms.17,18

FoxP3, a member of the forkhead transcription-
al-factor family, is the major regulator and
suppressive function of Treg cells.19 Retroviral
transduction of FoxP3 into CD4+CD25+ T cells
results in the acquisition of TCR hypo-
responsiveness, up-regulation of Treg associated
markers (Table 1) such CD25, CTLA+, GITR,
and the ability to suppress the activation of effector
T cells in vivo and in vitro, all of which suggest
that FoxP3 may be sufficient to affect the Treg
developmental program effeciently.20 Treg cells
have many unique specifications that include
expression of high levels of the CD257 marker
though there are another marker such as CD62L+,
ICOS+, and CD127low for Tregs . Tregs are hypo-
responsive to T cell receptor (TCR) stimulation in
vitro and are unable to proliferate or produce
activation-induced cytokines such as IL-2 or
IFNγ.21 Multiple protein-protein interactions that
involve several different domains have been
suggested to be engaged by FoxP3. IPEX
syndrome results from loss of function by
mutations in the FoxP3 gene.22 The FKH domain
is a hotspot for mutation in humans with IPEX that
is usually required for FoxP3 to bind to DNA
and localize to the nucleus23 in addition to
mediating a direct interaction with the transcription
factor NFAT. The protein product of FoxP3 is
approximately 431 amino acids in length and has
198 amino acids in the amino terminal region. It
is non-conserved, has a C2H2 zinc finger, a leucine
zipper, and a winged-helix/forkhead (FKH)
domain at its carboxyl-terminus.24

Lymphomas
There are three major categories of lymphoid

malignancies, B cell, T cell and Hodgkin’s
lymphoma (HL).25 B cell lymphomas are more

common than T cell lymphomas. About 90%
people diagnosed with non-Hodgkin’s lymphoma
(NHL) have a B cell lymphoma. The most
frequent B cell lymphomas are diffuse large B cell
lymphoma and follicular lymphoma. The less
common types include extra-nodal marginal zone
lymphoma of mucosa-associated tissue (MALT),
mantle cell, Burkett's lymphoma, mediastinal
large B cell, nodal marginal zone lymphoma,
small lymphocytic lymphoma (SLL) and  lympho-
plasmacytic lymphoma which is also called
Waldenstrom’s macroglobulinemia. Diffuse large
B cell lymphoma (DLBCL) has not been defined
in subgroups according to morphology due to
discrepancies arising from inter- and intra-observer
reproducibility.26 The rearranged immunoglobulin
genes in DLBCL carry mutations that are
important in hypermutation and diversification
of antibody that normally occurs only within the
germinal center of secondary lymphoid organs.27

T cell lymphomas include peripheral T cell
lymphoma, and cutaneous lymphomas such as
Mycosis fungoides and Sezary syndrome,
anaplastic large cell lymphoma and lymphoblastic
lymphoma which is mainly a T cell lymphoma,
however it can also be a B cell lymphoma. 

Cutaneous T cell lymphoma (CTCL) is a clonal
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Figure 2. Prostaglandin E2 (PGE2) and induced immune-
suppression (blue circle). T regulatory (Treg) cell activity (grey
circle).
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malignancy of CD4+ helper T cells that express a
memory phenotype and the propensity to
accumulate in the epidermis in proximity to
Langerhans cells (LCs) which are immature
DCs.28-33 It has been suggested that LCs are
stimulated by LC-mediated antigen presentation
which leads to the hypothesis that CTCL is a
disease of chronic antigen stimulation whose
growth is promoted by LC presentation of virally,
bacterially, or chemically modified peptides.34,35

Viruses or other infectious agents have long
been considered as the etiologic agents for HL.
Epstein-Barr virus is the main candidate as this
infectious agent has a unique and distinct history,
epidemiology, treatment, and biology. Recently,
autoimmune processes have suggested a potential
role for the immune-related and inflammatory
conditions in the etiology and pathogenesis of
HL.36 The Rye classification scheme for HL is
based on the histologic subtypes that represent
morphologic variations of a neoplasm in which
Hodgkin and Reed-Sternberg (HRS) cells are
embedded in a reactive background and show a
characteristic cellular composition for each
histological type.37

T regulatory (Treg) and natural T regulatory
(nTreg) cell trafficking at steady state

Cellular recruitment to the tissue is related to
local induction of cytokines and chemokines,
which are crucial regulators of immune cell
trafficking. CD4+ T cells are divided into Treg cells
and conventional T helper (Th) cells. The Th cells
control adaptive immunity against pathogens and
cancer by activating other effector immune cells.
T regulatory cells are defined as CD4+ T cells in

charge of suppressing potentially deleterious
activities of Th cells.38 CD4+CD25high FoxP3+
Tregs can suppress other immune cells and are
critical mediators of peripheral self-tolerance.39,40

Populations of CD3+CD4+ T cells that inhibit
effector B and T cells can produce immunosup-
pressive cytokines such as IL-10 and TGFβ. They
have a major role in suppressing anti-self-immune
responses to prevent autoimmune diseases.

The high percentage of nTreg cells with
effector/memory phenotype and tissue homing
receptor expression in adults enables them to
migrate from blood into peripheral tissues. Natural
T regulatory cell entry into tissues at a steady
state may enable a quick and effective suppressive
response against unwanted local immune
responses. Their exit from tissues prevents
accumulation that could lead to destructive
immune responses against pathogens or tumors.
After leaving the thymus, naive T cells circulate
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Figure 3. A. Interaction of B7-H1 high lymphoma B cell with AP-
1 of Tcd4+ can produce Treg cells from Tcd4+ cells. B. Blocking
the interaction of B7-H1 and AP-1 using antibody results in reduced
generation of Treg cells.

Table 2. The variations of Tregs in different malignancies.
Result Effect Disease
Tumor Secret PGE-2 Increase T regulatory (Treg) cell activity 

expression of FoxP3 inhibits CD3 activation
Malignant B cells High expression of B7-H1 Conversion of Tcd4+ to Treg cells
Malignant T cells Interaction of T cells with Shows all traits of Treg cells

immature dendritic cell DC
Hodgkin’s lymphoma (HL) Express and secrete Suppresses the immune response 

mediators of Th2 and Treg
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in the blood from which they migrate into
secondary lymphoid tissues due to expression of
L-selectin (CD62L) and the chemokine CC
receptor (CCR)7.41

In adoptive transfer experiments, Tregs with
CCR7– , CD62L– fail to achieve lymph node
directed homing and thus, to suppress proliferation
of CD4+ naive T cells.2 The majority of the nTreg
cells in cord blood express the gut-homing integrin
α4β7 and only a minor population of cells
expresses CCR4, whereas in adult nTreg cells, the
najority express CCR4 but not α4β7. Switch
expression of nTreg homing receptors from α4β7
to CCR4 occurs between 1.5 and 3 years of age,
along with a change from the CD45RA+ naïve to
the CD45RO+ memory phenotype. These
conversions indicate a crucial role for the gut in
nTreg cell stimulation by exogenous antigens in
early stages of life.43 There are at least two
populations of FoxP3+Treg cells in human adult
blood, CD45RA+ naive phenotype and CD45RO+

memory phenotype. The FoxP3+Treg cells with
the CD45RA+ naive phenotype represent the
majority in human cord blood.44 To distinguish
between these populations of Treg cells, CD95 can
be used. Memory Treg cells are sensitive to induce
apoptosis with CD95 but naive Treg cells are
resistant.13

Kaede transgenic mice are engineered to
express the photo-convertible fluorescence protein
Kaede, which changes from green to red when
exposed to violet light. In these mice during a
cutaneous immune reaction, the frequency of UV-
exposed migratory CD4+ T cells increases in
draining lymph nodes by ten-fold compared to the
steady state. Approximately half of the migrating
CD4+ T cells are Treg cells, hence this effect
shows that Treg cells protect the skin from
autoimmune responses.45 Although Treg cells
migrate into both inflammatory sites and draining
lymph nodes during an immune response, they
have different functions in each location. This
event suggests that Treg cells in draining lymph
nodes and inflammatory sites may not simply be
a division of function, but more Treg cells migrate

between peripheral tissues and draining lymph
nodes.46 Maintenance of Tregs in the periphery is
aided by signals via interleukin-2 (IL-2), CD28
and transforming growth factor-β (TGF-β).47

Tumors and conversion of non-T regulatory (Treg)
cells into Treg cells

Tumors actively promote the accumulation of
Treg cells through several mechanisms that
involve activation of naturally occurring Treg
cells as well as conversion of non-Treg cells into
Treg cells.48 Tumor-derived prostaglandin E2
(PGE2) can increase Treg cell activity. Expression
of the marker FoxP3,49 enhances the in vitro
inhibitory function of human Treg cells and
induces a regulatory phenotype in CD4+CD25+T
cells.50 Studies have shown that purified
CD4+CD25+ Treg cells have significant
enhancement of their inhibitory function after
incubation with PGE2 for 24 hours in vitro51 and
pre-incubation of CD4+CD25- T cells with PGE2
allows the regulatory T cell function, the PGE2-
treated CD4+CD25- stimulator cells have been
shown to inhibit CD3 activated proliferation of
autologous CD4+CD25- responder T cells.
Accelerated levels of intracellular  cAMP were
associated with reduced IL-2 production;52 cAMP
causes elevating agonists like PGE2 to induce
FoxP3 gene expression. Other pathways of PGE2-
induced immune-suppression include inhibition of
intracellular calcium release, inhibition of
polyamine synthesis, and suppression of p59
(Fyn) protein tyrosine kinase activity (Figure 2).53

Middle East J Cancer 2014; 5(2): 55-6660

Figure 4. Mechanism of T cell regulation.
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These Treg cells have been shown to secret TGF-
β, which provided the first evidence that Treg
cells contribute to immune dysfunction in patients
with cancer.54 The major role of TGF-β in immune
regulation is to suppress the immune response.55

TGF-β controls T cell response through Treg-
dependent and -independent mechanisms.

Role of malignant B cells in the conversion of non-
T regulatory (Treg) cells to Treg cells 

Tumors may induce immunologic tolerance
by promoting the expansion, recruitment and
activation of Treg cells.56 Treg cells, which
account for approximately 5% to 10% of
peripheral CD4+ T cells in both mice and humans
include naturally occurring CD4+CD25+ Treg
cells as well as peripherally induced CD4+ Tregs.57

Treg cells express lower levels of CD127 than
other CD4+ T cells and CD127 expression reverse
correlates with FoxP3 expression.58-60

Several studies have shown that increased
frequencies of CD4+CD25+ Treg cells in
peripheral blood and LN mediated severe
suppressive activity compared to those from
healthy individuals.61,62 Patients with aggressive
B cell NHL had higher frequencies of Treg cells
in peripheral blood than patients with indolent B
cell NHL.63 Yixiang Han et al. have found
significant induction of FoxP3+ cells from
CD4+CD25- T cells in the presence of malignant
B cells. In addition, FoxP3+cells could not be
induced from CD4+ CD25- T cells in the presence
of normal B cells from healthy persons. B7-H1,
a newly discovered member of the B7 family, is
expressed on B cell, T cell, monocytes and DCs.
Some studies have shown higher expression of B7-
H1 in lymphoma B cells than normal B cells.
Programmed death 1 (PD-1) is a member of the
CD28/CTLA-4 family which has a major role in
the maintenance of peripheral tolerance. PD-1 is
a receptor of B7-H1;64 blocking the interaction of
PD-1and B7-H1 by the anti-B7-H1 antibody could
partly inhibit induction of the CD4+ FoxP3+

phenotype in some patients. Blocking the - PD-1/
B7-H1 pathway could reduce the generation of

Treg cells, suggesting that PD-1/B7-H1 signaling
may regulate the generation of Treg cells in B cell
NHL.

Role of T cell lymphoma in conversion of non-T
regulatory (Treg) cells to Treg cells

Cutaneous T cell lymphoma cells (CTCL) are
a clonal malignant form of CD4+ Th cells that
express a memory phenotype with the tendency
to accumulate in the epidermis in the proximity of
Langerhans cells. For in vitro purposes the
proliferation of CTCL and autologous myeloid
DCs requires direct contact between these two cell
populations. Only immature autologous DCs
support CTCL cell replication and CTCL cells in
contrast produce interleukin-10 (IL-10), which
can maintain long-term DC immaturity.65,66

Cutaneous T cell lymphoma cells retain the
phenotype and genotype of the primary malignant
clone, whereas APCs have both immature and
mature DCs. The malignant cells initially
proliferate in the epidermis and later escape from
the skin, spreading into the blood and other
organs.67 Some studies have shown that mitogen,
antigen, and mixed leukocyte cultures with or
without cytokines only minimally stimulate
proliferation of isolated CTCL cells.68,69

Cutaneous T cell lymphoma cells cultured with IL-
2 and IL-7 and DCs cultured with granulocyte
monocyte colony-stimulating factor (GM-CSF)
and IL-4 did not survive and proliferate within few
weeks after culturing.70 Berger et al. have reported
that offering immature DCs with apoptotic CTCL
cells led to the expression of T Cell Receptor in
malignant T cells. The Cutaneous T cell
lymphomas respond by proliferated and up-
regulated cytoplasmic cytotoxic T lymphocyte
antigen-4 (CTLA-4), FoxP3, and membrane
CD25, and secreted IL-10 as a immunosuppres-
sive cytokine and transforming growth factor-
(TGF-b) that all are the features of T-regulatory
(Treg) cells.71 This phenomenon indicates the
relationship  between immature DCs and CTCLs
that can produce Treg cells from CTCL cells.

Middle East J Cancer 2014; 5(2): 55-66 61
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Hodgkin's lymphoma (HL) and T regulatory (Treg)
cells

Cytotoxic T lymphocytes (CTL) and Th1 cells
are effective mediators of anti-tumor immunity but
Th2 cells may contribute to tumor growth.72

Hodgkin and Reed-Sternberg (HRS) cells express
and secrete mediators for attracting the Th2 and
immunosuppressive Treg that have been identified
in classic HL tissue.73,74 

Studies have shown that expression of T cell-
specific tissue factor (TF) in HRS cells would
allow the production of T cell-specific cytokines,
thus facilitating autocrine stimulation of tumor cell
growth.75 Treg cells not only suppress tumor-
specific T cells but can also directly suppress B
lymphocytes, which together with Th2 cells are
central mediators of the humoral immune
response.76,77 In a pioneering report, Curiel et al.
have demonstrated a correlation between
intratumoral Treg cells and poor survival in
ovarian cancer which showed the detrimental
effect of suppressor T cells in disease outcome. 

Th2 cells, by the activation of B cells or the
production of the immunosuppressive cytokine IL-
10, are associated with aggressive tumors.
However this is not a general phenomenon, as
these cells are also associated with favorable
outcomes in HL and breast cancer which suggests
a protective effect of antibodies in these
diseases.78,79 In other words Th1 cells and the
cytokines such as IFNγ are associated with good
clinical outcome for many cancer types. Thus,
general characteristics appear in which cytotoxic
T cells, memory T cells and Th1 cells are likely
associated with prolonged survival whereas the
differential effect of other Th cell populations
and Treg cells may be attributed to their bad
prognoses. 

T helper 17 (Th17) and T regulatory (Treg) cells
T helper 17 (Th17) cells, a recently described

CD4+ T cell subset, protect hosts against parasitic
and fungal infections and interfere in inflammatory
reactions and autoimmunity. The balance between
Treg and Th17 cells is particularly essential for
maintaining homeostasis of anti-tumor

immunity.80 Th17 cells differentiate in the presence
of IL-6, IL-1, IL-21, IL-23 with TGF-β and
produce IL-17 and IL-22.81

IL-17 induces expression of a number of
chemokines and cytokines that include IL-6, TGF-
β, G-CSF or GM-CSF, matrix metalloproteinase
and ICAM-1 in a variety of cell types, including
bone marrow stromal cells.82 Treg and Th17
developmental programs are equally
interconnected. Following TCR stimulation a
naive T cell can express FoxP3 and become a
Treg cell in the presence of TGF-β while in the
presence of TGF-β and IL-6 or IL-21, the Treg
expansion pathway is abrogated, and T cells
develop into Th17 cells. Only the combination of
TGF-β with IL-6 or IL-21, but neither of them
alone, induces a huge production of IL-17 by
naive T cells.44,83 Therefore, IL-6 plays a pivotal
role in dictating the balance between the
generation of Tregs and Th17 cells.14 IL-6, an
acute phase protein that induces during
inflammation, inhibits the generate on of FoxP3+

Treg cells that are induced by TGF-β during
inflammation.22 The mechanism by which IL-6
and IL-21 act as switch factors relies on the control
of the FoxP3/RORγt balance.83 A low frequency
of TH17cells with no detectable amount of IL-17
producing cells present in the tumor microenvi-
ronment can be seen. The absence of B lymphoma
cells can occur with treatment by IL-1β/IL-6 or
lipopolysaccharide (LPS) which in turn enhances
IL-17 expression in CD4+ T cells. This
enhancement is attenuated when CD4+ T cells
and lymphoma B cells are cultured together.

Mechanism of function of T cell regulation
According to the cross regulation model

proposed by Leon et al., suppression by Treg
cells is antigen specific.84 In this model that has
received experimental support, Treg cells are
proposed to be autoreactive and suppress Th cells
that have the same antigen specificity.85,86

From a functional perspective, the various
potential suppression mechanisms of Treg cells
can be grouped into four basic modes of action:
suppression by cytolysis, suppression by inhibitory

Middle East J Cancer 2014; 5(2): 55-6662
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cytokines, suppression by modulation of DC
maturation or function and suppression by
metabolic disruption (Figure 4). 

Most studies show that Treg cells mediate
suppression by inhibiting the induction of IL-2
mRNA and mRNA for other effector cytokines in
the responder FoxP3- T cells.88

The role of IL-2 utilization in the suppressive
mechanism of Treg cells is under dispute. Treg
cells express all three markers of the high-affinity
IL-2R (CD25), CD122, and CD132. IL-2 is
essential for Treg cell homeostasis in vivo and
important for their efficient suppressor function
in vitro.88,89

Conclusion
Recent studies in other cancers have suggested

that Treg cells are involved in the control of anti-
tumor immunity by inducing tolerance to the
tumor. It has been shown that Treg cells influence
tumor immune responses by suppressing tumor-
specific immune cells. However, scant data exists
regarding the effect of Treg cells on tumor-specific
T cell immunity in B cell NHL and subsequently
on malignant B cell growth.

Anti-tumor response in B cell NHL is
profoundly suppressed by the presence of large
numbers of intratumoral Treg cells. NHL B cells
induce FoxP3 expression in CD4+CD25- T cells
and contribute to the development of Treg cells in
malignant lymph nodes. Accelerating processes
such as increasing the amount of Treg cells (e.g.,
increasing the amount of the IL-6 or IL-17) can
enhance FoxP3 Treg expression which results in
lymphoma production or inactivation of T cell
CD4+; this effect is the reason behind the
malignancy of B cells and reduction in anti-tumor
immune responses. T helper 17 causes
autoimmune diseases whereas Treg cells suppress
autoimmune diseases and anti-tumor immune
responses. In multiple myeloma, conversion of
Treg cells to Th17 mediated by cytokines or other
mediators have shown some therapeutic effects on
such patients. It can be seen from different data
that Treg cells play an important role in
lymphomas, however the mechanisms of action

warrant additional studies.
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